
Deakin University CRICOS Provider Code: 00113B

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language
Processing

Week 8 – Large Language Models

mailto:reda.bouadjenek@deakin.edu.au

Deakin University CRICOS Provider Code: 00113B

Week 8. 1 - Introduction to Large
Language Models

SIT330-770: Natural
Language Processing

2

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

• Remember the simple n-gram language model

o Assigns probabilities to sequences of words

o Generate text by sampling possible next words

o Is trained on counts computed from lots of text

• Large language models are similar and different:

o Assigns probabilities to sequences of words

o Generate text by sampling possible next words

o Are trained by learning to guess the next word

Language models

Deakin University CRICOS Provider Code: 00113B

• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text

Large language models

4

Deakin University CRICOS Provider Code: 00113B

• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text

Large language models

5

Deakin University CRICOS Provider Code: 00113B

Three architectures for large language models

6

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Decoders
GPT, Claude, Llama, Mixtral

Encoders
BERT family, HuBERT

Encoder-decoders
Flan-T5, Whisper

Deakin University CRICOS Provider Code: 00113B

• Many varieties!

o Popular: Masked Language Models (MLMs)

o BERT family

o Trained by predicting words from surrounding words on both sides

o Are usually finetuned (trained on supervised data) for classification tasks.

Encoders

7

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Deakin University CRICOS Provider Code: 00113B

• Trained to map from one sequence to another

• Very popular for:

o machine translation (map from one language to another)

o speech recognition (map from acoustics to words)

Encoder-Decoders

8

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Deakin University CRICOS Provider Code: 00113B

Week 8. 2 - Large Language Models:
What tasks can they do?

SIT330-770: Natural
Language Processing

9

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

Many tasks can be turned into tasks of

predicting words!

10

Big idea

Deakin University CRICOS Provider Code: 00113B

• Also called:

o Causal LLMs

o Autoregressive LLMs

o Left-to-right LLMs

o Predict words left to right

This lecture: decoder-only models

11

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Deakin University CRICOS Provider Code: 00113B

Conditional Generation: Generating text conditioned on
previous text!

12 Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Deakin University CRICOS Provider Code: 00113B

• Sentiment analysis: “I like Jackie Chan”

1. We give the language model this string:

The sentiment of the sentence "I like

Jackie Chan" is:

2. And see what word it thinks comes next:

Many practical NLP tasks can be cast as word prediction!

13

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3

Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to see which ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles is very likely, and then if wechoose Charles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow the text by atoken liketl;dr; this token isshort for something like

Deakin University CRICOS Provider Code: 00113B

• QA: “Who wrote The Origin of Species”

1. We give the language model this string:

2. And see what word it thinks comes next:

3. And iterate:

Framing lots of tasks as conditional generation

14

20 CHAPTER 10 • TRANSFORMERS AND LARGE LANGUAGE MODELS

Prefix Text

Completion Text

Input

Embeddings

Transformer

Blocks

Sample from Softmax

So long

all

and thanks for all

the

the

…

linear layer

Figure10.15 Autoregressive text completion with transformer-based large languagemodels.

word “negative” to seewhich ishigher:

P(positive|Thesentiment of thesentence “ I likeJackieChan” is:)

P(negative|Thesentiment of thesentence “ I likeJackieChan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider the task

of answering simple questions, a task we return to in Chapter 14. In this task the

system isgiven somequestion and must givea textual answer. Wecan cast the task

of question answering aswordprediction by giving alanguagemodel aquestion and

atoken likeA: suggesting that an answer should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If weask a language model to compute

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote thebook “ TheOrigin of Species” ? A: Charles)

wemight now see that Darwin is themost probable word, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it.

Wecan cast summarization as language modeling by giving a large language model

a text, and follow the text by a token liketl;dr; this token is short for something

like ‘ too long; don’t read’ and in recent yearspeopleoften usethis token, especially

in informal work emails, when they are going to give a short summary. We can

then do conditional generation: give the language model this prefix, and then ask

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3

Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to seewhich ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now seethat Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, and producean effectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow thetext by atoken liketl;dr; this token isshort for something like

10.1 • LARGE LANGUAGE MODELS WITH TRANSFORMERS 3

Prefix Text

Completion Text

Encoder

Transformer

Blocks

Softmax

long

all

and thanks for all

the

the

…

U UUnencoder layer

Language

Modeling

Head
logits

So

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

E

i+

…

Figure10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language

models. Aseach token isgenerated, it getsadded onto thecontext asaprefix for generating thenext token.

word “negative” to seewhich ishigher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is

positive, otherwise wesay thesentiment isnegative.

We can also cast more complex tasks as word prediction. Consider question

answering, in which the system is given a question (for example a question with

a simple factual answer) and must give a textual answer; we introduce this task in

detail in Chapter 15. Wecan cast the task of question answering asword prediction

by giving alanguagemodel aquestion and atoken likeA:suggesting that an answer

should comenext:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible

next wordsgiven thisprefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that

Charles isvery likely, and then if wechooseCharles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

wemight now see that Darwin is themost probable token, and select it.

Conditional generation can even beused to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to takea longtext
summarization

text, such asafull-length article, andproduceaneffectiveshorter summary of it. We

can cast summarization as language modeling by giving a large language model a

text, and follow thetext by atoken liketl;dr; thistoken isshort for something like

Deakin University CRICOS Provider Code: 00113B

Summarization

15

Original

Summary

Deakin University CRICOS Provider Code: 00113B

LLMs for summarization (using tl;dr)

16 Original Story

Generated Summary

… idea

Kyle

was born. Kyle

Waring

WaringonlyThe

…

will

Delimiter

will

U U U

tl;dr

LM Head

E E E E E E E E

…

Deakin University CRICOS Provider Code: 00113B

Week 8. 3 - Sampling for LLM
Generation

SIT330-770: Natural
Language Processing

17

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

• This task of choosing a word to generate based on the model’s probabilities is

called decoding.

• The most common method for decoding in LLMs: sampling.

• Sampling from a model’s distribution over words:

o choose random words according to their probability assigned by the model.

• After each token we’ll sample words to generate according to their probability

conditioned on our previous choices,

o A transformer language model will give the probability

Decoding and Sampling

18

Deakin University CRICOS Provider Code: 00113B

Random sampling

19

Deakin University CRICOS Provider Code: 00113B

• Even though random sampling mostly generate sensible, high-probable

words,

• There are many odd, low- probability words in the tail of the distribution

• Each one is low- probability but added up they constitute a large portion of

the distribution

• So they get picked enough to generate weird sentences

Random sampling doesn't work very well

20

Deakin University CRICOS Provider Code: 00113B

• Emphasize high-probability words

 + quality: more accurate, coherent, and factual,

 - diversity: boring, repetitive.

• Emphasize middle-probability words

 + diversity: more creative, diverse,

 - quality: less factual, incoherent

Factors in word sampling: quality and diversity

21

Deakin University CRICOS Provider Code: 00113B

1. Choose # of words k

2. For each word in the vocabulary V , use the language model to compute the

likelihood of this word given the context p(wt |w<t)

3. Sort the words by likelihood, keep only the top k most probable words.

4. Renormalize the scores of the k words to be a legitimate probability distribution.

5. Randomly sample a word from within these remaining k most-probable words

according to its probability.

Top-k sampling:

22

Deakin University CRICOS Provider Code: 00113B

• Problem with top-k: k is fixed so may cover very different amounts of

probability mass in different situations

• Idea: Instead, keep the top p percent of the probability mass

• Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set

of words such that

Top-p sampling (= nucleus sampling)

23

Holtzman et al., 2020

Deakin University CRICOS Provider Code: 00113B

• Reshape the distribution instead of truncating it

• Intuition from thermodynamics,

o a system at high temperature is flexible and can explore many possible states,

o a system at lower temperature is likely to explore a subset of lower energy (better) states.

• In low-temperature sampling, (τ ≤ 1) we smoothly

o increase the probability of the most probable words

o decrease the probability of the rare words.

Temperature sampling

24

Deakin University CRICOS Provider Code: 00113B

• Divide the logit by a temperature parameter τ before passing it through the

softmax.

• Instead of

• We do

Temperature sampling

25

Deakin University CRICOS Provider Code: 00113B

• Why does this work?

o When τ is close to 1 the distribution doesn’t change much.

o The lower τ is, the larger the scores being passed to the softmax

o Softmax pushes high values toward 1 and low values toward 0.

o Large inputs pushes high-probability words higher and low probability word lower,

making the distribution more greedy.

o As τ approaches 0, the probability of most likely word approaches 1

Temperature sampling

26

0 ≤ τ ≤ 1

Deakin University CRICOS Provider Code: 00113B

Week 8. 4 - Pretraining Large Language
Models: Algorithm

SIT330-770: Natural
Language Processing

27

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

• The big idea that underlies all the amazing performance of language models

• First pretrain a transformer model on enormous amounts of text

• Then apply it to new tasks.

Pretraining

28

Deakin University CRICOS Provider Code: 00113B

• We just train them to predict the next word!

1. Take a corpus of text

2. At each time step t

I. ask the model to predict the next word

II. train the model using gradient descent to minimize the error in this prediction

o "Self-supervised" because it just uses the next word as the label!

Self-supervised training algorithm

29

Deakin University CRICOS Provider Code: 00113B

• Same loss function: cross-entropy loss

o We want the model to assign a high probability to true word w

o = want loss to be high if the model assigns too low a probability to w

• CE Loss: The negative log probability that the model assigns to the true next

word w

o If the model assigns too low a probability to w

o We move the model weights in the direction that assigns a higher probability to w

Intuition of language model training: loss

30

Deakin University CRICOS Provider Code: 00113B

• CE loss: difference between the correct probability distribution and the predicted distribution

• The correct distribution yt knows the next word, so is 1 for the actual next word and

0 for the others.

• So in this sum, all terms get multiplied by zero except one: the logp the model

assigns to the correct next word, so:

•

Cross-entropy loss for language modeling

31

Deakin University CRICOS Provider Code: 00113B

• At each token position t, model sees correct tokens w1:t’

oComputes loss (–log probability) for the next token wt+1

• At next token position t+1 we ignore what model predicted for wt+1

o Instead we take the correct word wt+1, add it to context, move on

Teacher forcing

32

Deakin University CRICOS Provider Code: 00113B

Training a transformer language model

33

long and thanks forNext token all

Loss

…

=− logyand

Stacked

Transformer

Blocks

So long and thanks for

…

…

…

U

Input tokens

x1 x2

Language

Modeling

Head

x3 x4 x5

Input

Encoding E

1+

E

2+

E

3+

E

4+

E

5+

…

… ………

U U U U

…

logits logits logits logits logits

…− logyt hanks

Deakin University CRICOS Provider Code: 00113B

Week 8. 5 - Pretraining data for LLMs

SIT330-770: Natural
Language Processing

34

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

• Common crawl, snapshots of the entire web produced by the non- profit

Common Crawl with billions of pages

• Colossal Clean Crawled Corpus (C4; Raffel et al. 2020), 156 billion tokens of

English, filtered

o What's in it? Mostly patent text documents, Wikipedia, and news sites

LLMs are mainly trained on the web

35

Deakin University CRICOS Provider Code: 00113B

The Pile: a pretraining corpus

36

Figure 1: Treemap of Pile components by effectivesize.

troduce a new filtered subset of Common Crawl,

Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is

significantly distinct from pure Common Crawl

data. Additionally, our evaluations show that the

existing GPT-2 and GPT-3 models perform poorly

on many components of thePile, and that models

trained on the Pile significantly outperform both

raw and filtered Common Crawl models. To com-

plement the performance evaluations, we also per-

form an exploratory analysis of the text within the

Pile to provide a detailed picture of the data. We

hope that our extensive documentation of the con-

struction and characteristics of the Pile will help

researchers make informed decisions about poten-

tial downstream applications.

Finally, we make publicly available the preprocess-

ing code for the constituent datasets of the Pile and

the code for constructing alternative versions2. In

the interest of reproducibility, we also document

all processing performed on each dataset (and the

Pile as awhole) in asmuch detail as possible. For

further details about the processing of each dataset,

seeSection 2 and Appendix C.

2ht t ps: / / gi t hub. com/ El eut her AI /
t he- pi l e

1.1 Contr ibutions

The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-

language dataset for language modeling com-

bining 22 diverse sources.

2. The introduction of 14 new language model-

ing datasets, which we expect to be of inde-

pendent interest to researchers.

3. Evaluations demonstrating significant im-

provements across many domains by GPT-2-

sized models trained on this new dataset, com-

pared to training on CC-100 and raw Common

Crawl.

4. The investigation and documentation of this

dataset, which wehope will better inform re-

searchers about how to use it as well asmoti-

vate them to undertake similar investigations

of their own data.

2 The Pile Datasets

ThePile iscomposed of 22 constituent sub-datasets,

asshown in Table1. Following Brown et al. (2020),

we increase the weights of higher quality compo-

nents, with certain high-quality datasets such as

Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books

Deakin University CRICOS Provider Code: 00113B

• Quality is subjective

o Many LLMs attempt to match Wikipedia, books, particular websites

o Need to remove boilerplate, adult content

o Deduplication at many levels (URLs, documents, even lines)

• Safety also subjective

o Toxicity detection is important, although that has mixed results

o Can mistakenly flag data written in dialects like African American English

Filtering for quality and safety

37

Deakin University CRICOS Provider Code: 00113B

• There are canines everywhere! One dog in the front room, and two dogs

• It wasn't just big it was enormous

• The author of "A Room of One's Own" is Virginia Woolf

• The doctor told me that he

• The square root of 4 is 2

What does a model learn from pretraining?

38

Deakin University CRICOS Provider Code: 00113B

Text contains enormous amounts of knowledge

Pretraining on lots of text with all that knowledge is

what gives language models their ability to do so much

39

Big idea

Deakin University CRICOS Provider Code: 00113B

• Copyright: much of the text in these datasets is copyrighted

o Not clear if fair use doctrine in US allows for this use

o This remains an open legal question

• Data consent:

o Website owners can indicate they don't want their site crawled

• Privacy:

o Websites can contain private IP addresses and phone numbers

But there are problems with scraping from the web

40

Week 8. 6 - Finetuning

SIT330-770: Natural
Language Processing

41

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

• What happens if we need our LLM to work well on a domain it didn't see in

pretraining?

• Perhaps some specific medical or legal domain?

• Or maybe a multilingual LM needs to see more data on some language that

was rare in pretraining?

Finetuning for adaptation to new domains

42

Deakin University CRICOS Provider Code: 00113B

Finetuning

43

Fine-

tuning

Data
Pretraining Data

Pretraining

… … …

Fine-tuning

… … …

Pretrained LM Fine-tuned LM

Deakin University CRICOS Provider Code: 00113B

• We'll discuss 1 here, and 3 in later lectures

• In all four cases, finetuning means:

o taking a pretrained model and further adapting some or all of its

parameters to some new data

"Finetuning" means 4 different things

44

Deakin University CRICOS Provider Code: 00113B

• Further train all the parameters of model on new data

• using the same method (word prediction) and loss function (cross-

entropy loss) as for pretraining.

• as if the new data were at the tail end of the pretraining data

• Hence sometimes called continued pretraining

1. Finetuning as "continued pretraining" on new data

45

Week 8. 7 - Evaluating Large Language
Models

SIT330-770: Natural
Language Processing

46

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

• Just as for n-gram grammars, we use perplexity to measure how well the LM

predicts unseen text

• The perplexity of a model θ on an unseen test set is the inverse probability

that θ assigns to the test set, normalized by the test set length.

• For a test set of n tokens w1:n the perplexity is :

Perplexity

47

Deakin University CRICOS Provider Code: 00113B

• Probability depends on size of test set

• Probability gets smaller the longer the text

• Better: a metric that is per-word, normalized by length

• Perplexity is the inverse probability of the test set, normalized by the number of

words

(The inverse comes from the original definition of perplexity from cross-entropy rate in

information theory)

Probability range is [0,1], perplexity range is [1,∞]

Why perplexity instead of raw probability of the test set?

48

Deakin University CRICOS Provider Code: 00113B

• The higher the probability of the word sequence, the lower the perplexity.

• Thus the lower the perplexity of a model on the data, the better the model.

• Minimizing perplexity is the same as maximizing probability

Also: perplexity is sensitive to length/tokenization so best used when

comparing LMs that use the same tokenizer.

Perplexity

49

Deakin University CRICOS Provider Code: 00113B

• Size

 Big models take lots of GPUs and time to train, memory to store

• Energy usage

 Can measure kWh or kilograms of CO2 emitted

• Fairness

 Benchmarks measure gendered and racial stereotypes, or decreased

performance for language from or about some groups.

Many other factors that we evaluate, like:

50

Week 8. 8 - Dealing with Scale

SIT330-770: Natural
Language Processing

51

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

• LLM performance depends on

• Model size: the number of parameters not counting embeddings

• Dataset size: the amount of training data

• Compute: Amount of compute (in FLOPS or etc

• Can improve a model by adding parameters (more layers, wider contexts),

more data, or training for more iterations

• The performance of a large language model (the loss) scales as a power-law

with each of these three

Scaling Laws

52

Deakin University CRICOS Provider Code: 00113B

• Loss L as a function of # parameters N, dataset size D, compute budget C (if other two are

held constant)

• Scaling laws can be used early in training to predict what the loss would be if we were to

add more data or increase model size.

Scaling Laws

53

Deakin University CRICOS Provider Code: 00113B

• Thus GPT-3, with n = 96 layers and dimensionality d = 12288, has 12 × 96 ×

122882 ≈ 175 billion parameters.

Number of non-embedding parameters N

54

Deakin University CRICOS Provider Code: 00113B

• In training, we can compute attention very efficiently in parallel:

• But not at inference! We generate the next tokens one at a time!

• For a new token x, need to multiply by WQ, WK, and WV to get query, key, values

• But don't want to recompute the key and value vectors for all the prior tokens x<i

• Instead, store key and value vectors in memory in the KV cache, and then we can

just grab them from the cache

KV Cache

55

Deakin University CRICOS Provider Code: 00113B

KV Cache

56

Deakin University CRICOS Provider Code: 00113B

• Adapting to a new domain by continued pretraining (finetuning) is a problem with

huge LLMs.

o Enormous numbers of parameters to train

o Each pass of batch gradient descent has to backpropagate through many many huge layers.

o Expensive in processing power, in memory, and in time.

• Instead, parameter-efficient fine tuning (PEFT)

o Efficiently select a subset of parameters to update when finetuning.

o E.g., freeze some of the parameters (don’t change them),

o And only update some a few parameters.

Parameter-Efficient Finetuning

57

Deakin University CRICOS Provider Code: 00113B

• Trransformers have many dense matrix multiply layers

• Like WQ, WK, WV, WO layers in attention

• Instead of updating these layers during finetuning,

• Freeze these layers

• Update a low-rank approximation with fewer parameters.

LoRA (Low-Rank Adaptation)

58

Deakin University CRICOS Provider Code: 00113B

• Consider a matrix W (shape [N × d]) that needs to be updated during finetuning via gradient descent.

• Normally updates are ∆W (shape [N × d])

• In LoRA, we freeze W and update instead a low-rank decomposition of W:

• A of shape [N×r],

• B of shape [r×d], r is very small (like 1 or 2)

• That is, during finetuning we update A and B instead of W.

• Replace W + ∆W with W + BA.

• Forward pass: instead of

 h = xW

• We do

 h = xW + xAB

LoRA

59

Deakin University CRICOS Provider Code: 00113B

LoRA

60

Week 8. 9 - Harms of Large Language
Models

SIT330-770: Natural
Language Processing

61

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

Hallucination

62

Deakin University CRICOS Provider Code: 00113B

Copyright

63

Deakin University CRICOS Provider Code: 00113B

Privacy

64

Deakin University CRICOS Provider Code: 00113B

Toxicity and Abuse

65

Deakin University CRICOS Provider Code: 00113B

Misinformation

66

	Main
	Slide 1: SIT330-770: Natural Language Processing

	Week 8. 1 - Introduction to Large Language Models
	Slide 2: SIT330-770: Natural Language Processing
	Slide 3: Language models
	Slide 4: Large language models
	Slide 5: Large language models
	Slide 6: Three architectures for large language models
	Slide 7: Encoders
	Slide 8: Encoder-Decoders

	Week 8. 2 - Large Language Models: What tasks can they do?
	Slide 9: SIT330-770: Natural Language Processing
	Slide 10: Big idea
	Slide 11: This lecture: decoder-only models
	Slide 12: Conditional Generation: Generating text conditioned on previous text!
	Slide 13: Many practical NLP tasks can be cast as word prediction!
	Slide 14: Framing lots of tasks as conditional generation
	Slide 15: Summarization
	Slide 16: LLMs for summarization (using tl;dr)

	Week 8. 3 - Sampling for LLM Generation
	Slide 17: SIT330-770: Natural Language Processing
	Slide 18: Decoding and Sampling
	Slide 19: Random sampling
	Slide 20: Random sampling doesn't work very well
	Slide 21: Factors in word sampling: quality and diversity
	Slide 22: Top-k sampling:
	Slide 23: Top-p sampling (= nucleus sampling)
	Slide 24: Temperature sampling
	Slide 25: Temperature sampling
	Slide 26: Temperature sampling

	Week 8. 4 - Pretraining Large Language Models: Algorithm
	Slide 27: SIT330-770: Natural Language Processing
	Slide 28: Pretraining
	Slide 29: Self-supervised training algorithm
	Slide 30: Intuition of language model training: loss
	Slide 31: Cross-entropy loss for language modeling
	Slide 32: Teacher forcing
	Slide 33: Training a transformer language model

	Week 8. 5 - Pretraining data for LLMs
	Slide 34: SIT330-770: Natural Language Processing
	Slide 35: LLMs are mainly trained on the web
	Slide 36: The Pile: a pretraining corpus
	Slide 37: Filtering for quality and safety
	Slide 38: What does a model learn from pretraining?
	Slide 39: Big idea
	Slide 40: But there are problems with scraping from the web

	Week 8. 6 - Finetuning
	Slide 41: SIT330-770: Natural Language Processing
	Slide 42: Finetuning for adaptation to new domains
	Slide 43: Finetuning
	Slide 44: "Finetuning" means 4 different things
	Slide 45: 1. Finetuning as "continued pretraining" on new data

	Week 8. 7 - Evaluating Large Language Models
	Slide 46: SIT330-770: Natural Language Processing
	Slide 47: Perplexity
	Slide 48: Why perplexity instead of raw probability of the test set?
	Slide 49: Perplexity
	Slide 50: Many other factors that we evaluate, like:

	Week 8. 8 - Dealing with Scale
	Slide 51: SIT330-770: Natural Language Processing
	Slide 52: Scaling Laws
	Slide 53: Scaling Laws
	Slide 54: Number of non-embedding parameters N
	Slide 55: KV Cache
	Slide 56: KV Cache
	Slide 57: Parameter-Efficient Finetuning
	Slide 58: LoRA (Low-Rank Adaptation)
	Slide 59: LoRA
	Slide 60: LoRA

	Week 8. 9 - Harms of Large Language Models
	Slide 61: SIT330-770: Natural Language Processing
	Slide 62: Hallucination
	Slide 63: Copyright
	Slide 64: Privacy
	Slide 65: Toxicity and Abuse
	Slide 66: Misinformation

